Some Properties of the F- Structure Manifold Satisfying F^{3k}+F^k =0

Abstract

In this paper we have studied various properties of the F structure manifold satisfying $F^{3k}+F^{k}=0$, where K is a positive integer. The metric F structure, f induced on each integral manifold of tangent bundles I* have also been discussed.

Keywords: Differentiable Manifold, Projection Operators, Tangent Bundles and Metric.

Introduction

Let V_n be a C^{∞} differentiable manifold and F be a C^{∞} (1,1) tensor defined on V_n, s.t. $F^{3k}+F^{k}=0.$

- (1.1)
 - We define the projection operators I and m on v_n by $I = -F^{2k}$. m= $I + F^{2}$ (1.2)
 - From (1.1) and (1.2), we have $I+m=I, I^2=I, m^2=m, Im=mI=0$ $IF^k=F^kI=F^k, mF^k=F^km=0$ (1.3)

Theorem (1.1) If rank ((F))=n, then

- l=l, m=0 (1.4)
- Proof from the fact Rank ((F))+ nullity ((F))= dim $V_n=n$ (1.5)
- (1.6)Nulity ((F))=0 =) Ker ((F))= $\{\underline{0}\}$
- Thus FX=0 =) X=0
- Then let $FX_1 = FX_2$
- =) F (x₁-x₂)=0
- =) X₁=X₂ or F is 1-1.

Moreover Vn being finite dimensional , F is onto also : F is invertible =) F^{k} is inversibl, operating F^{-k} on F^{k} = F^{k} and m F^{k} =0, we get (1.4) Theorem (1.2) let m and F satisfy

- $m^2=m$, $mF^k=F^km=0$, $(m+F^k)$ $(m-F^k)=I$, then F satisfying (1.7)(1.1)
- Proof : $(m+F^k)$ $(m-F^k)=I$ m²-mF^k+F^km-F^{2k}=I m-0+0-F^{2k}=I mF^k-F^{3k}=F^k
 - 0-F^{3k}=f^k Or $F^{3k}+F^{k}=0$.
- **Metric F Structure** If we define
 - [/]F (X,Y)=g (FX, Y) is skew symmetric (2.1)
 - then
 - (2.2)g(FX,Y) = -g(X,FY)
- **Theorem (2.1)** with the definitions in (2.1) and (2.2) we have (2.3) g ($F^{k}X$, $F^{k}Y$) = (-1)^{*k*+1} [g (X,Y)-m(X,Y)]
 - Where
 - m(X,Y) = g(mX,Y)(2.4)
- Proof using (1.2), (1.3), (2.2) and (2.4), we have (2.5) g ($F^{k}X$, $F^{k}Y$)= (-1)^k g (X, $F^{2k}Y$)

 - $\begin{array}{l} g(1, X, 1, 1) (-1)^{k} g(X, -ly) \\ = (-1)^{k+1} g(X, -ly) \\ = (-1)^{k+1} g(X, (l-m)Y) \\ = (-1)^{k+1} [g(X, Y) g(X, mY)] \\ = (-1)^{k+1} [g(X, Y) g(mX, Y)] \\ = (-1)^{k+1} [g(X, Y) g(mX, Y)] \\ \end{array}$

 - $=(-1)^{k+1}[g(X, Y) m(X, Y)]$
- Theorem (2.2) [F, g] is not unique.
 - Proof (2.6), Let $\mu F' = F\mu$, ${}^{f}g(X, Y) = g(\mu X, \mu Y)$ Then from (1.1), (1.2), (1.3) and (2.6) (2.7) $\mu F'^{3k} = F^{3k}\mu = -F^{k}\mu = -\mu F'^{k}$

Lakhan Singh

Assistant Professor, Deptt.of Mathematics. D.J.College, Baraut, Baghpat

Vijay Pal Singh

Associate Professor, Deptt.of Physics, D.J.College, Baraut, Baghpat

P: ISSN NO.: 2394-0344

VOL-1* ISSUE-IX* December- 2016 Remarking An Analisation

E: ISSN NO.: 2455-0817

Or
(2.8)
$$F^{'3k}+F^{'k}=0$$
. Also
(2.9) ${}^{'}g(F^{'k}x, F^{'k}Y)=g(\mu F^{'k}X, \mu F^{'k}Y)$
 $=g(F^{k}\mu X, F^{k}\mu Y)$
 $=(-1)^{k}g(\mu X, F^{2k}\mu Y)$
 $=(-1)^{k+1}g(\mu X, \mu Y)$
 $=(-1)^{k+1}g(\mu X, \mu Y)$
 $=(-1)^{k+1}[g(\mu X, \mu Y)-g(\mu X, m\mu Y)]$
 $=(-1)^{k+1}[g(\chi, \gamma)-m'(X, \gamma)]$
Induced Structure f, Define
(3.1) $fX'=FX'$ for $X'CI^*$
Theorem (3.1), If f satisfy (3.1) and F (1.1)
Then [f^k] is an almost complex structure
Proof From (1.2), (1.3) and (3.10
(3.2) $f^{2k}|X'=F^{2k}|X'$
 $=-I^{2k'}$

Thus $[f^k]$ acts as an almost complex structure on I^* .

(3.3)
$$\mu I' = -\mu F^{/2K} = -F^{2k} \mu = I \mu$$

(3.4) $\mu m' = \mu (I + F'^{2k})$ = $\mu + \mu F'^{2k}$ = $\mu + F^{2k}\mu$ = $m\mu$.

Aim of Study

The ain of study is to develope the conditions under which recovery of (1.1) is possible. **Conclusion**

If $m^2=m$, $mF^k=F^km=0$, $(m+F^k)(m-F^k)=I$, then (1.1) is recovered.

References

- 1. K.Yana: On a structure defined by a tensor field f of the type (1,1) satisfying $f^3+f=0.Tensor$ N.S.,14(1963),99-102.
- R.Nivas and S.Yadav: On CR-structure and Fµ (2v+3,2)-HSU-structure satisfying F^{2v+3}+µ^r F²=0. Acta ciencia Indica, vol. XXXVIIM, no.4, 645 (2012).
- Abhisek Singh, Ramesh Kumar Pandey and Sachin Khare:On horizontal and complete lifts of (1,1) tensor field F satisfying the structure equation F(2k+s,s)=0.International journal of mathematics and soft computing. vol.VI, no.1, (2016),143-152.